

No matter what kinds of soft rock, loose-medium rock, hard rock and any other special formulations, just tell us what you need, our special tailored service is waiting for you upon your demand.

KEMAICO USA CORPORATION

300 Knightsbridge Pkwa, Ste.113 Lincolnshine. IL Tel: 1-847913 6878 Fax: 1-847913 6879

Web: kemaico.com Email: office@kemaico.com

Rotary Drill Bits

U B

Table of contents

Bearing Types

Open Air bearing Open Fluid bearing Sealed Roller bearing Sealed Journal bearing

Bit Features / Enhancements

Open Air to Bearing Bits Sealed Bearing Bits

IADC classification

Product offering

Useful Operating Information

Bearing Types....

Open Air Bearing

In this configuration an air passage is provided to the Bearing area. The compressed air cools and lubricates the Bearings and blows away any drilling debris extending the life of the Bearing. This Bearing configuration is commonly used in Blasthole Mining applications

Open Fluid Bearing

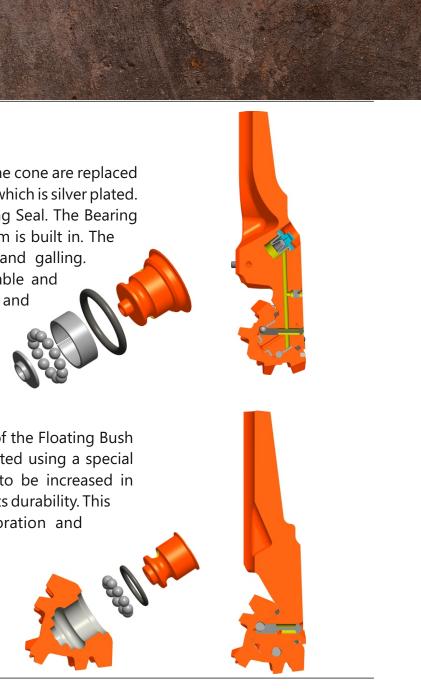
The standard open roller bearings are without a seal or an air passage. They are ideal for drilling shallow holes, in the hundreds of feet with either foam or mud circulation. These bearing configurations are commonly used in Water Well applications.

Sealed Roller Bearing

While sealed Roller Bearings have some of the features of Open to Air Bearings, the Bearing pack is protected with an O- Ring Seal and has lubrication and pressure compensator system built in. This prevents ingress of dirt into the Bearing system and leakage of grease. This configuration is used for Mining Workover and Exploration applications

Bearing Types & Valves

Sealed Journal Bearing


In Sealed Journal Bearing the Rollers inside the cone are replaced by a Floating Bush made out of special alloys which is silver plated. The Bearing Pack is protected with an O-Ring Seal. The Bearing lubrication and pressure compensator system is built in. The Floating Bush is highly resistant to heat and galling. Consequently these Bearings are very durable and suitable for Oil & Gas as well as Horizontal and Directional Drilling applications

In Bearings for Small Diameter Bits instead of the Floating Bush the internal surface of the Cone is silver plated using a special process. This design enables Bearing size to be increased in relation to the diameter of the Bit enhancing its durability. This Bearing design finds application in Exploration and Workover and Well drilling applications

Non Return Valves

The non return valve is designed to work very effectively in heavy ground water conditions protecting both the bit's bearings as well as the pipe threads.

Air to Bearing Bit features ...

Sealed Bearing Bit features ...

Special features provided for cone steel erosion when drilling is abrasive formations The cutting structure on the bits is optimized with intermittent pitch breaks for efficient rock breakage and to reduce vibration The teeth are long, strong, widely spaced with intermittent deletions to permit deep penetration in the formation with comparatively light weight on bit

** Customizable gage protection options for maximum endurance

> **Customizable shirttail protection options for maximum endurance

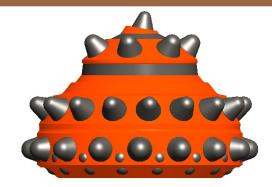
A variety of hole bottom cleaning options depending on the application

Non return valve options for water injection drilling and heavy ground water conditions.

Grease compensator to maintain pressure inside the bearing and improve lubrication

2001 DIA

Hard metal deposit on the teeth for endurance and shape retention


> Nozzles with circlip retention for Sealed Bearing Bits

API standard threads are turned with precision machining making them concentric to the gage rows for uniform loading on bearings

Additional product features...

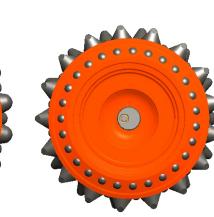
Types of Bits....TC Insert

Cone steel protection options

Small carbide inserts in between gage and drive rows to reduce steel wear and increase service life

Gage protection options

Double gage protection for very abrasive drilling conditions


Shirttail protection options

1/3rd shirttail protection for non abrasive drilling

Hard metal on nose area of cones to avoid coring while drilling is very hard and abrasive formations

Single gage protection for normal non-abrasive drilling conditions

2/3rd shirttail protection for medium hard and moderately abrasive drilling

Full shirttail protection for very hard and very abrasive drilling

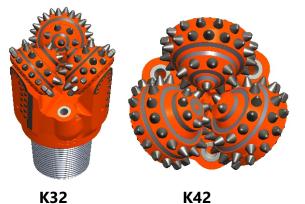
Soft formation

Application : For use in less abrasive softer formations with compressive strength ranging between 90 – 150 Mpa, such as shales, limestones, carbonates and most metamorphic formations.

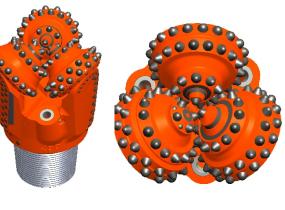
Cutting profile: These bits are characterized by large diameter, widely spaced chisel or sharp conical inserts with high projection. This configuration promotes maximum penetration rates in softer formations. Smaller carbide inserts are provided on the gage and inner rows to contain shell erosion and improve performance

Medium formation

Application : For use in moderately abrasive consolidated formations with compressive strength ranging between 120 - 200 Mpa such as hard limestone, guartzite, granodiorite, and medium grade metamorphic formations.

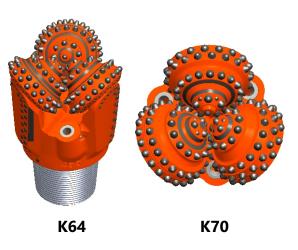

Cutting profile: These bits are characterized by moderately spaced wedge chisel or conical inserts with medium projection. This configuration promotes good penetration rates in medium hard and moderately abrasive formations. Smaller carbide inserts are provided on the gage and inner rows or hard metal is deposited in the nose area to contain shell erosion and improve performance

Hard formation


Application : For use in abrasive consolidated formations with compressive strength above 200 Mpa such as taconite, guartzite and banded iron formations

Cutting profile: These bits are characterized by closely spaced conical or spherical inserts with medium to low projection. This configuration promotes good penetration rates in hard, consolidated and very abrasive formations. Smaller carbide inserts are provided on the gage and inner rows or hard metal is deposited in the nose area to contain shell erosion and improve performance

K4X series


K5X & K6X series

K52

K60

K7X series

Types of Bits....Steel Tooth

Soft & Medium formation

K1X & K2X series

Application : These tooth bits are designed for optimum performance in formations of low compressive strength ranging below 70 MPA

Cutting profile: These soft formation bits are designed with long, slim, strong, widely spaced teeth with intermittent deletions to permit deep penetration in the formation with comparatively light weight on bit.

K11

K22

Hard formation

K3X series

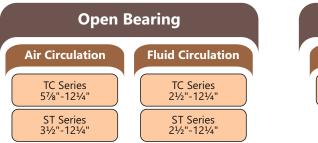
Application : These tooth bits are designed for medium to hard formations with compressive strength ranging between 70 - 100 MPA

Cutting profile: These bits have higher capacity bearings, more closely spaced teeth with increased tooth angles and more gage surface for resisting wear to allow the use of heavier weights required to effectively drill hard formations

K33

Hole bottom flushing options

Side Jet



Center jet

Combined jet

Product Line

Bit selection chart

Strength of Rock		Sc	ft	Medium			Ha	ard						
PSI	MPA	10	20	30	40	50	60	70	80	Rock Formation / Class				
Lower	Lower									Limestone, Siltstone				
2,000	14									Claystone, Mudstone, schist				
4,000	28									Marl, Chalky Limestone				
6,000	41									Soft - Medium Shales				
8,000	55									Soft Marble, Dolomite				
10,000	69									Consolidates Sandstone				
12,000	83									Medium Shale, conglomaerat				
14,000	97									Tuff, Soft Schist				
16,000	110									Andesite, Rhyolite				
18,000	124									Quartzite (Sand & Silt)				
20,000	138									Limestone, Marble				
22,000	152									Monzonite, Granite				
24,000	165									Gneiss				
26,000	179									Diorite, Diabase				
28,000	193									Hard Shale, Slate				
30,000	207									Limestone, Dolomite				
32,000	221									Basalt				
34,000	234									Tactite, Skarn				
36,000	248									Granodiorite				
38,000	262									Taconite				
40,000	276									Quartzite				
42,000	290									Syenite				
44,000	303									Gabbro				
46,000	317													
48,000	331									Banded Iron				
50,000	345									Taconite				
52,000	359									Chert				
54,000	372									Basalt (Hard)				
56,000	386									Quartzite				
58,000	400													
60,000	414									Amphibolite				
Higher	Higher									Hornfels, Hematite Ore				

Product offering

Blasthole Bits						Open Roller Bearing Sealed Roller Bearing												
Bit	Softest				Rock hardness								Hardest					
Diameter	4-1	4-2	4-3	4-4	5-1	5-2	5-3	5-4	6-1	6-2	6-3	6-4	7-1	7-2	7-3	7-4		
51/8"						K52				K62				K72				
150 mm																		
6¼"						K52				K62				K72				
159 mm																		
6¾"		K42				K52				K62		K64		K72				
172 mm																		
71/8"	K32	K42					K53			K60				K70				
200 mm	K32S	K42S																
81⁄2"						K50				K60				K70				
216 mm																		
85⁄8"					K50				K60				K70					
229 mm									K60S									
9"	K32	K42			K50				K60				K70					
229 mm	K32	K42S							K60S									
97⁄8"	K32	K42		K44		K52					K63	K64			K73			
251 mm	K32S	K42S									K63S	K64S						
105⁄8"	K32	K42					K53				K63				K73			
270 mm	K32S																	
12¼"							K53				K64				K73			
311 mm																		

Sealed bearing Bits

Sealed Journal Bearing

Sealed Roller Bearing

Bit		IADC Classification																						
Diameter	11	12	13	21	22	23	31	32	33	41	42	43	44	51	52	53	54	61	62	63	64	71	72	73
3 7⁄8" 99 mm	\checkmark														\checkmark									
4 ½"				\checkmark																				
114 mm																								
4 5⁄8"				\checkmark																				
117 mm																								
4 3⁄4"	\checkmark			\checkmark											\checkmark									
121 mm																								
5 ½"															\checkmark		\checkmark				\checkmark			
140 mm																								
5 1/8"	\checkmark														\checkmark									
149mm																								
6"	\checkmark														\checkmark									
152 mm																								
6 ¼"	\checkmark														\checkmark									
159 mm																								

Product offering

Se	Sealed bearing Bits														
Bit										A					
Diameter	11	12	13	21	22	23	31	32	33						
6 ½"															
165 mm															
6 ³⁄4"	\checkmark														
171 mm															
7 1⁄2"															
191 mm										Γ					
7 1/8"	\checkmark														
200 mm										Γ					
8 ³ ⁄4"	\checkmark														
222 mm										Γ					
9 7⁄8"	\checkmark														
251 mm	\checkmark			\checkmark						Γ					
12 ¼"	\checkmark														
311 mm										Γ					

Water-well, Construction & Exploration Bits

Bit Dia	meter	IADC Classification											
Inches	mm.	11	23	32	33	40	50	60					
2 ½"	64	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
2 5⁄8"	67	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
2 1/8"	73	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
2 ¹⁵ ⁄16"	75	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3"	76	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 1⁄8"	80	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 ¼"	83	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 3⁄8"	86	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 ½"	89	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 5⁄8"	92	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 ¾"	95	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
3 1/8"	99	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4"	102	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 ½"	105	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 ¼"	108	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 3⁄8"	111	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 ½"	114	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 5⁄8"	118	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 ³ ⁄4"	121	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
4 1/8"	124	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					
5"	127	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark					

Bit Diameter IADC Classification Inches mm. 11 23 32 33 40 50 60 70 130 5 ½" \checkmark \checkmark \checkmark \checkmark \checkmark 5 ¼" 133 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 5 3⁄8" 137 \checkmark \checkmark 140 5 ½" \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 143 5 5⁄8" 146 5 ¾" \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 149 5 1⁄8" 6" 152 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 6 ¼" 156 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 6 ¼" 159 \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 165 6 ½" \checkmark \checkmark | \checkmark \checkmark \checkmark \checkmark 171 6 ¾" \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark \checkmark 7" 178 \checkmark \checkmark \checkmark 7 5⁄8" 194 \checkmark \checkmark \checkmark 200 7 1⁄8" \checkmark \checkmark \checkmark 216 \checkmark \checkmark \checkmark 8 ½" 219 8 5⁄8" 229 9" 251 9 1⁄8" \checkmark \checkmark 270 \checkmark \checkmark 10 5⁄4" 12 ¼" 311 \checkmark \checkmark

 \checkmark

 \checkmark

Useful Operating Information

- When a new bit is installed, drill at reduced weight for a short period
- Provide adequate air to the bit to ensure trouble free bearing performance and reduced abrasion wear on cones and shirttails. (recommended is 40 45 psi at the bit)
- Turn the air on before lowering the bit to collar the hole. Keep the air on until the bit is finished drilling and is out of the hole.
- Always rotate the bit when moving in or out of the hole.
- Some indications that the hole is not being properly cleaned are:
 - Increase in torque indication through higher hydraulic pressure.
 - Increase in air pressure.
 - Heavy wear and /or damage indications on shirttails.
- Always rotate when coming out of the hole to:
 - Help in cleaning the cuttings from the hole.
 - Keeps cuttings from entering the bearings around the back face of the cone.
- Never use the hydraulic pressure on the bit for levelling the machine.
- When adding extra drill steel in wet holes, always make three or four cleaning passes to get a cleaner hole bottom.
- Bit cones should be checked periodically to be sure that all are about the same temperature. One hot cone generally indicates that the air passage to that bearing is obstructed. Clean the bit with water and continue drilling
- A bit should never be left down the hole when repairs require lowering the head assembly to the deck. This bit should be substituted by a dull bit to protect the drill pipe threads.
- Properly maintain the drill pipe and its threaded connections. A bent pipe will often cause early failure.
- Blasthole bits drill most economically when sufficient weight is applied to cause spalling of the formation. Selecting correct rotary speed is usually a matter of trial-and-error, depending upon the formation being drilled or use the factory recommended weight and rotation speeds.
- Always record footage drilled, time in the hole, RPM, WOB (weight on bit), air pressure psi, formation drilled and any unusual drilling conditions.
- After the bit is discarded it is necessary to make a comparative analysis of each bit type dulling and causes. Evaluating those findings can increase drilling efficiency while reducing drilling cost and will precisely determine what bit design features are required for the application.

